Part Number Hot Search : 
PT26B10 DM74LS85 57SMOB R1LV161 M79C9 10003 2030A 74125
Product Description
Full Text Search
 

To Download PCD3311CT Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 INTEGRATED CIRCUITS
DATA SHEET
PCD3311C; PCD3312C DTMF/modem/musical-tone generators
Product specification Supersedes data of May 1990 File under Integrated Circuits, IC03 1996 Nov 21
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
CONTENTS 1 2 3 4 5 6 6.1 6.2 6.3 6.4 6.5 6.6 7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 8 8.1 8.2 8.3 8.4 8.5 8.5.1 8.5.2 9 10 11 12 13 14 14.1 14.2 14.2.1 14.2.2 14.3 14.3.1 14.3.2 14.3.3 FEATURES GENERAL DESCRIPTION QUICK REFERENCE DATA ORDERING INFORMATION BLOCK DIAGRAM PINNING INFORMATION Pinning PCD3311CP Pin description PCD3311CP Pinning PCD3311CT Pin description PCD3311CT Pinning PCD3312C Pin description PCD3312C FUNCTIONAL DESCRIPTION General Clock/oscillator connection Mode selection (PCD3311C) Data inputs (PCD3311C) Strobe input (PCD3311C ) I2C-bus clock and data inputs Address input I2C-bus data configuration Tone output Power-on reset Tables of Input and output I2C-BUS INTERFACE Bit transfer Start and stop conditions System configuration Acknowledge Timing specifications Standard mode Low-speed mode HANDLING LIMITING VALUES CHARACTERISTICS APPLICATION INFORMATION PACKAGE OUTLINES SOLDERING Introduction DIP Soldering by dipping or by wave Repairing soldered joints SO Reflow soldering Wave soldering Repairing soldered joints 2 15 16 17
PCD3311C; PCD3312C
DEFINITIONS LIFE SUPPORT APPLICATIONS PURCHASE OF PHILIPS I2C COMPONENTS
1996 Nov 21
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
1 FEATURES
PCD3311C; PCD3312C
* DTMF, modem and musical tone generation * Stabilized output voltage level * Low output distortion with on-chip filtering conforming to CEPT recommendations * Latched inputs for data bus applications * I2C-bus compatible * Selection of parallel or serial (I2C-bus) data input (PCD3311C). 2 GENERAL DESCRIPTION
used, and a separate microcontroller is required to control the devices. Both the devices can interface to I2C-bus compatible microcontrollers for serial input. The PCD3311C can also interface directly to all standard microcontrollers, accepting a binary coded parallel input. With their on-chip voltage reference the PCD3311C and PCD3312C provide constant output amplitudes which are independent of the operating supply voltage and ambient temperature. An on-chip filtering system assures a very low total harmonic distortion in accordance with CEPT recommendations. In addition to the standard DTMF frequencies the devices can also provide: * Twelve standard frequencies used in simplex modem applications for data rates from 300 to 1200 bits per second * Two octaves of musical scales in steps of semitones.
The PCD3311C and PCD3312C are single-chip silicon gate CMOS integrated circuits. They are intended principally for use in telephone sets to provide the dual-tone multi-frequency (DTMF) combinations required for tone dialling systems. The various audio output frequencies are generated from an on-chip 3.58 MHz quartz crystal-controlled oscillator. A separate crystal is
3
QUICK REFERENCE DATA PARAMETER operating supply voltage operating supply current standby current DTMF HIGH group output voltage level (RMS value) DTMF LOW group output voltage level (RMS value) pre-emphasis (voltage gain) of group total harmonic distortion operating ambient temperature - - 158 125 1.85 - -25 MIN. 2.5 - - - 192 150 2.10 -25 - TYP. MAX. 6.0 0.9 3 205 160 2.35 - +70 V mA A mV mV dB dB C UNIT
SYMBOL VDD IDD Istb VHG(RMS) VLG(RMS) Gv THD Tamb 4
ORDERING INFORMATION PACKAGE
TYPE NUMBER NAME PCD3311CP PCD3311CT PCD3312CP PCD3312CT DIP14 SO16 DIP8 SO8 DESCRIPTION plastic dual in-line package; 14 leads (300 mil) plastic small outline package; 16 leads; body width 7.5 mm plastic dual in-line package; 8 leads (300 mil) plastic small outline package; 8 leads; body width 7.5 mm VERSION SOT27-1 SOT162-1 SOT97-1 SOT176-1
1996 Nov 21
3
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
5 BLOCK DIAGRAM
PCD3311C; PCD3312C
handbook, full pagewidth
OSCI 1(3)
OSCO 2(4) CLOCK GENERATOR
VDD 14(2)
VSS 13(1)
OSCILLATOR 3
MODE
D5 D4 D3 D2 D1/SDA D0/SCL
4 12 11 10 9(8) 8(7) INPUT CONTROL LOGIC
HIGH GROUP DIVIDER
DAC HIGH SWITCHED CAPACITOR BANDGAP VOLTAGE REFERENCE
DIVIDER SELECTION (ROM)
(5)6 ADDER DAC LOW SWITCHED RESISTOR CAPACITOR CAPACITOR
TONE
STROBE
5
LOW GROUP DIVIDER 7(6)
PCD3311C PCD3312C
MGG543
A0 The un-parenthesised numbers are for the PCD3311CP, those in parenthesis for the PCD3312C.
Fig.1 Block diagram.
6 6.1
PINNING INFORMATION Pinning PCD3311CP
6.2
Pin description PCD3311CP PIN 1 2 3 4 5 6 7 8 9 10 - 12 13 14 TYPE I O I I I O I I I I P P DESCRIPTION oscillator input oscillator output mode select input (selects I2C or parallel data input) parallel data input strobe input (for loading data in parallel mode) frequency output (DTMF, modem, musical tones) slave address input (to be connected to VDD or VSS) parallel data input or I2C-bus clock line parallel data input or I2C-bus data line parallel data inputs negative supply positive supply
SYMBOL OSCI OSCO MODE
handbook, halfpage
OSCI OSCO MODE D5 STROBE TONE A0
1 2 3 4 5 6 7
MGG508
14 VDD 13 VSS 12 D4
D5 STROBE TONE A0 D0/SCL D1/SDA D2 - D4
PCD3311CP 11 D3
10 D2 9 8 D1/SDA D0/SCL
Fig.2 Pin configuration PCD3311CP.
VSS VDD
1996 Nov 21
4
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
6.3 Pinning PCD3311CT 6.4
PCD3311C; PCD3312C
Pin description PCD3311CT PIN 1 2 3 4 5 6 7 8 9 10 11, 12 13 14 15 16 TYPE I O I I - I O I I I I - I P P DESCRIPTION oscillator input oscillator output mode select input (selects I2C or parallel data input) parallel data input not connected strobe input (for loading data in parallel mode) frequency output (DTMF, modem, musical tones) slave address input (to be connected to VDD or VSS) parallel data input or I2C-bus clock line parallel data input or I2C-bus data line parallel data inputs not connected parallel data input negative supply positive supply
SYMBOL OSCI OSCO MODE
handbook, halfpage
OSCI OSCO MODE D5 n.c. STROBE TONE A0
1 2 3 4
16 VDD 15 VSS 14 D4 13 n.c.
D5 n.c. STROBE TONE A0 D0/SCL D1/SDA D2, D3 n.c. D4 VSS VDD
PCD3311CT
5 6 7 8
MGG509
12 D3 11 D2 10 D1/SDA 9 D0/SCL
Fig.3 Pin configuration PCD3311CT.
6.5
Pinning PCD3312C
6.6
Pin description PCD3312C PIN 1 2 3 4 5 6 7 8 TYPE P P I O O I I I DESCRIPTION negative supply positive supply oscillator input oscillator output frequency output (DTMF, modem, musical tones) slave address input (to be connected to VDD or VSS) I2C-bus clock line I2C-bus data line
SYMBOL VSS VDD OSCI
handbook, halfpage
OSCO
VSS VDD OSCI 1 2 8 7 SDA SCL A0 TONE
TONE A0 SCL
PCD3312C
3 4
MGG510
6 5
OSCO
SDA
Fig.4 Pin configuration PCD3312C.
1996 Nov 21
5
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
7 7.1 FUNCTIONAL DESCRIPTION General (see Fig.1) 7.4
PCD3311C; PCD3312C
Data inputs (PCD3311C)
The Input Control Logic decodes the input data to determine whether DTMF, modem or musical tones are selected; and which particular tone or combination of tones is required. A code representing the required tones is sent to the Divider Selection ROM which selects the correct division ratio in both of the Frequency Dividers (or in one divider, if only a single tone is required). The Oscillator circuit provides a square wave of frequency 3.58 MHz. Each Frequency Divider divides the frequency of the Oscillator to give a serial digital square wave with a frequency simply related to that of the required tone. The output from each Frequency Divider goes to a DAC, which is also fed by a clock derived from the oscillator. Using these two signals, the DAC produces an approximate sine wave of the required frequency, with an amplitude derived from the Voltage Reference. The output from the DAC goes to an Adder where, for DTMF, it is combined with the output from the other DAC. The output from the Adder goes through two stages of Low Pass Filters to give a smoothed tone (single or dual), and finally to the TONE output. 7.2 Clock/oscillator connection
Inputs D0, D1, D2, D3, D4 and D5 are used in the parallel data input mode of the PCD3311C. Inputs D0 and D1 are also used in serial input mode when they act as the SCL and SDA inputs respectively. Inputs D0 and D1 have no internal pull-down or pull-up resistors and must not be left open in any application. Inputs D2, D3, D4 and D5 have internal pull-down. D4 and D5 are used to select between DTMF dual, DTMF single, modem and musical tones (see Table 1). D0, D1, D2 and D3 select the tone combination or single tone within the selected application. They also, in combination with D4, select the standby mode. See Tables 2, 3, 4 and 5. PCD 3312C has no parallel data pins as data input is via the I2C-bus. Table 1 D5 Use of D5 and D4 to select application D4 APPLICATION
LOW LOW DTMF single tones; musical tones; standby LOW HIGH DTMF dual tones (all 16 combinations) HIGH LOW modem tones HIGH HIGH musical tones 7.5 Strobe input (PCD3311C )
The timebase for the PCD3311C and PCD3312C is a crystal-controlled oscillator, requiring a 3.58 MHz quartz crystal to be connected between OSCI and OSCO. Alternatively, the OSCI input can be driven from an external clock of 3.58 MHz. 7.3 Mode selection (PCD3311C)
The STROBE input (with internal pull-down) allows the loading of parallel data into D0 to D5 when MODE is HIGH. The data inputs must be stable preceding the positive-going edge of the strobe pulse (active HIGH). Input data are loaded at the negative-going edge of the strobe pulse and then the corresponding tone (or standby mode) is provided at the TONE output. The output remains unchanged until the negative-going edge of the next STROBE pulse (for new data) is received. Figure 5 is an example of the timing relationship between STROBE and the data inputs. When MODE is LOW, data is received serially via the I2C-bus.
The MODE input selects the data input mode for the PCD3311C. When MODE is connected to VDD (HIGH), data can be received in the parallel mode. When connected to VSS (LOW) or left open, data can be received via the serial I2C-bus. PCD 3312C has no MODE input as data input is via the I2C-bus only.
1996 Nov 21
6
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
PCD3311C; PCD3312C
handbook, full pagewidth
tSPW STROBE tDS D0 90% 10% tDH
D1
D2
D3
D4
D5 ttone (ON) TONE oscillator OFF
MGG511
oscillator ON no output tone
oscillator ON output tones
Fig.5
Timing of STROBE, parallel data inputs and TONE output (770 Hz + 1477 Hz in example) in the parallel mode (MODE = HIGH).
7.6
I2C-bus clock and data inputs
7.8
I2C-bus data configuration (see Fig.6)
SCL and SDA are the serial clock and serial data inputs according to the I2C-bus specification, see Chapter 8. SCL and SDA must be pulled up externally to VDD. For the PCD3311C, SCL and SDA are combined with parallel inputs D0 and D1 respectively - D0/SCL and D1/SDA operate serially only when MODE is LOW. 7.7 Address input
The PCD3311C and PCD3312C are always slave receivers in the I2C-bus configuration. The R/W bit in is thus always LOW, indicating that the master (microcontroller) is writing. The slave address in the serial mode consists of 7 bits: 6 bits internally fixed, 1 externally set via A0. in the serial mode, the same input data codes are used as in the parallel mode. See Tables 2, 3, 4 and 5. 7.9 Tone output
Address input A0 defines the least significant bit of the I2C-bus address of the device (see Fig.6). The first 6 bits of the address are fixed internally. By tying the A0 of each device to VDD (HIGH) and VSS (LOW) respectively, two different PCD3311C or PCD3312C devices can be individually addressed on the bus. Whether one or two devices are used, A0 must be connected to VDD or VSS.
The single and dual tones provided at the TONE output are first filtered by an on-chip switched-capacitor filter, followed by an active RC low-pass filter. The filtered tones fulfil the CEPT recommendations for total harmonic distortion of DTMF tones. An on-chip reference voltage provides output tone levels independent of the supply voltage. Tables 3, 4 and 5 give the frequency deviation of the output tones with respect to the standard DTMF, modem and music frequencies.
1996 Nov 21
7
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
PCD3311C; PCD3312C
handbook, full pagewidth
acknowledge from slave MSB S 0 1 0 0 1 0 A0 R/W 0 A X X D5 D4 D3 D2 D1
acknowledge from slave
D0
A
P
slave address
MGG512
data internal STROBE for data latching
Fig.6 I2C-bus data format.
7.10
Power-on reset
In order to avoid an undefined state when the power is switched ON, the devices have an internal reset circuit which sets the standby mode (oscillator OFF). 7.11 TABLES OF INPUT AND OUTPUT
The specified output tones are obtained when a 3.579545 MHz crystal is used. In each table, the logical states for the input data lines are related to voltage levels as follows: 1 = HIGH = VDD 0 = LOW = VSS X = don't care Table 2 D5 X X X X Note 1. The alternative HEX values depend on the value of D5. Input data for no output tone, TONE in 3-state D4 0 0 0 0 D3 0 0 0 0 D2 0 0 0 0 D1 0 0 1 1 D0 0 1 0 1 HEX(1) 00 or 20 01 or 21 02 or 22 03 or 23 OSCILLATOR ON OFF OFF OFF
1996 Nov 21
8
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
Table 3 Input data and output for DTMF tones
PCD3311C; PCD3312C
D5
D4
D3
D2
D1
D0
HEX
TONE STANDARD OUTPUT SYMBOL FREQUENCY FREQ. Hz Hz 697.90 770.46 850.45 943.23 1206.45 1341.66 1482.21 1638.24 - - - - - - - - - - - - - - - - - - - - - - - - 0 1 2 3 4 5 6 7 8 9 A B C D * #
FREQUENCY DEVIATION % +0.13 +0.06 -0.18 +0.24 -0.21 +0.42 +0.35 +0.32 - - - - - - - - - - - - - - - - Hz +0.90 +0.46 -1.55 +2.23 -2.55 +5.66 +5.21 +5.24 - - - - - - - - - - - - - - - -
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Table 4
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
697 770 852 941 1209 1336 1477 1633 941+1336 697+1209 697+1336 697+1477 770+1209 770+1336 770+1477 852+1209 852+1336 852+1477 697+1633 770+1633 852+1633 941+1633 941+1209 941+1477
Input data and output for modem tones STANDARD FREQUENCY Hz TONE OUTPUT FREQ. Hz 1296.94 2103.14 1197.17 2192.01 978.82 1179.03 FREQUENCY DEVIATION % -0.24 +0.15 -0.24 -0.36 -0.12 -0.08 Hz -3.06 +3.14 -2.83 -7.99 -1.18 -0.97 V.23 Bell 202 V.21
D5
D4
D3
D2
D1
D0
HEX
TELECOM. STANDARD
1 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 1 1
1 1 1 1 0 0
0 0 1 1 0 0
0 1 0 1 0 1
24 25 26 27 28 29
1300 2100 1200 2200 980 1180
1996 Nov 21
9
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
PCD3311C; PCD3312C
D5
D4
D3
D2
D1
D0
HEX
STANDARD FREQUENCY Hz
TONE OUTPUT FREQ. Hz 1 073.33 1265.30 1655.66 1852.77 2021.20 2223.32
FREQUENCY DEVIATION % +0.31 -0.37 +0.34 +0.15 -0.19 -0.08 Hz +3.33 -4.70 +5.66 +2.77 -3.80 -1.68
TELECOM. STANDARD
1 1 1 1 1 1 Table 5
0 0 0 0 0 0
1 1 1 1 1 1
0 0 1 1 1 1
1 1 0 0 1 1
0 1 0 1 0 1
2A 2B 2C 2D 2E 2F
1070 1270 1650 1850 2 025 2225
Bell 103 V.21 Bell 103
Input/output for musical tones STD. FREQ. BASED ON A4 = 440 Hz Hz TONE OUTPUT FREQUENCY Hz 622.5 659.5 697.9 741.1 782.1 832.3 879.3 931.9 985.0 1044.5 1111.7 1179.0 1245.1 1318.9 1402.1 1482.2 1572.0 1655.7 1768.5 1875.1 1970.0 2103.1 2223.3 2358.1 2470.4
D5
D4
D3
D2
D1
D0
HEX
NOTE
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0
0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 1 1 1 0 1
30 31 32 33 34 35 36 37 38 39 3A 29 3B 3C 3D 0E 3E 2C 3F 04 05 25 2F 06 07
D#5 E5 F5 F#5 G5 G#5 A5 A#5 B5 C6 C#6 D6 D#6 E6 F6 F#6 G6 G#6 A6 A#6 B6 C7 C#7 D7 D#7
622.3 659.3 698.5 740.0 784.0 830.6 880.0 932.3 987.8 1046.5 1108.7 1174.7 1244.5 1318.5 1396.9 1480.0 1568.0 1661.2 1760.0 1864.7 1975.5 2093.0 2217.5 2349.3 2489.0
1996 Nov 21
10
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
8 I2C-BUS INTERFACE
PCD3311C; PCD3312C
The I2C-bus is for two-way communication between different ICs or modules. It uses only two lines, a serial data line (SDA) and a serial clock line (SCL), both of which are bi-directional. Both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus is not busy. 8.1 Bit transfer (see Fig.7)
One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as control signals.
SDA
SCL data line stable; data valid change of data allowed
MBC621
Fig.7 Bit transfer.
8.2
Start and stop conditions (see Fig.8)
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop condition (P).
SDA
SDA
SCL S START condition P STOP condition
SCL
MBC622
Fig.8 Start and stop conditions.
1996 Nov 21
11
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
8.3 System configuration (see Fig.9)
PCD3311C; PCD3312C
A device generating a message is a `transmitter', a device receiving a message is the `receiver'. The device that controls message transfer is the `master' and the devices that are controlled by the master are the `slaves'.
SDA SCL MASTER TRANSMITTER / RECEIVER SLAVE TRANSMITTER / RECEIVER MASTER TRANSMITTER / RECEIVER
MBA605
SLAVE RECEIVER
MASTER TRANSMITTER
Fig.9 System configuration.
8.4
Acknowledge
The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter whereas the master generates an extra acknowledge after the reception of each byte. Also a master must generate an acknowledge after reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges has to pull down the SDA line during the acknowledge-related clock pulse. Set-up and hold times must be taken into account to ensure that the SDA line is stable LOW during the whole HIGH period of the acknowledge-related clock pulse. A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate the stop condition.
DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL FROM MASTER S START CONDITION
MBC602
1
2
8
9
clock pulse for acknowledgement
Fig.10 Acknowledgment on the I2C-bus.
1996 Nov 21
12
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
8.5 Timing specifications
PCD3311C; PCD3312C
The PCD3311C and PCD3312C accept data input from a microcontroller and are `slave receivers' when operating via the I2C-bus. They support the `standard' and `low-speed' modes of the I2C-bus, but not the `fast' mode detailed in "The I2C-bus and how to use it" document order no. 9398 393 40011. The timing requirements for the devices are described in Sections 8.5.1 and 8.5.2. 8.5.1 STANDARD MODE
Masters generate a bus clock with a maximum frequency of 100 kHz. Detailed timing is shown in Fig.11, where the two signal levels are LOW = VIL and HIGH = VIH, see Chapter 11. Figure 12 shows a complete data transfer in standard mode. The time symbols are explained in Table 6.
handbook, full pagewidth
SDA
t BUF
t LOW
tf
SCL t HIGH t SU;DAT
t HD;STA
tr
t HD;DAT
SDA
MBC764
t SU;STA
t SU;STO
Fig.11 Standard mode timing.
1996 Nov 21
13
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
PCD3311C; PCD3312C
handbook, full pagewidth
SDA
SCL
1-7
8
9
1-7
8
9
1-7
8
9
START ADDRESS CONDITION
R/W
ACK
DATA
ACK
START ADDRESS CONDITION
R/W
ACK
STOP
MBC765
Clock LOW minimum = 4.7 s; clock HIGH minimum = 4 s. The dashed line is the acknowledgment of the receiver. Mark-to-space ratio = 1 : 1 (LOW-to-HIGH). Maximum number of bytes is unrestricted. Premature termination of transfer is allowed by generation of STOP condition. Acknowledge clock bit must be provided by master.
Fig.12 Complete data transfer in standard mode.
Table 6
Explanation of time symbols used in Fig.11 PARAMETER SCL clock frequency tolerable pulse spike width bus free time The time that the bus is free (SDA is HIGH) before a new transmission is initiated by SDA going LOW. Only valid for repeated start code. REMARKS MIN. 0 - 4.7 MAX. 100 100 - UNIT kHz ns s
SYMBOL fSCL tSW tBUF
tSU;STA tHD;STA tLOW tHIGH tr tf tSU;DAT tHD;DAT tSU;STO 8.5.2
set-up time repeated START hold time START condition SCL LOW time SCL HIGH time rise time SDA and SCL fall time SDA and SCL data set-up time data hold time set-up time STOP condition LOW-SPEED MODE
4.7
- - - - 1.0 0.3 - - -
s s s s s s ns ns s
The time between SDA going LOW and the first 4.0 valid negative-going transition of SCL. The LOW period of the SCL clock. The HIGH period of the SCL clock. 4.7 4.0 - - 250 0 4.0
Masters generate a bus clock with a maximum frequency of 2 kHz; a minimum LOW period of 105 s and a minimum HIGH period of 365 s. The mark-to-space ratio is 1 : 3 LOW-to-HIGH. Detailed timing is shown in Fig.13, where the two signal levels are LOW = VIL and HIGH = VIH, see Chapter 11. Figure 14 shows a complete data transfer in low-speed mode.The time symbols are explained in Table 7.
1996 Nov 21
14
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
PCD3311C; PCD3312C
handbook, full pagewidth
SDA
tBUF
tLOW
tf
SCL
tHD;STA
tr
tHIGH tHD;DAT
tSU;DAT
SDA
tSU;STA
tSU;STO
MGG545
Fig.13 Low-speed mode timing.
handbook, full pagewidth
SDA
R/W
SCL START CONDITION START BYTE DUMMY REPEATED ACKNOWLEDGE START CONDITION ADDRESS ACKNOWLEDGE STOP CONDITION
MGG546
Clock LOW minimum = 130 s 25 s; clock HIGH minimum 390 s 25 s. Mark-to-space ratio = 1 : 3 (LOW-to-HIGH). Start byte 0000 0001. Maximum number of bytes = 6. Premature termination of transfer not allowed. Acknowledge clock bit must be provided by master.
Fig.14 Complete data transfer in low speed mode.
1996 Nov 21
15
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
Table 7 Explanation of time symbols used in Fig.13 PARAMETER SCL clock frequency tolerable pulse spike width bus free time REMARKS
PCD3311C; PCD3312C
SYMBOL fSCL tSW tBUF
MIN. 0 -
MAX. 2 100 -
UNIT kHz ns s
The time that the bus is free (SDA is HIGH) before a new transmission is initiated by SDA going LOW. Only valid for repeated start code. The time between SDA going LOW and the first valid negative-going transition of SCL. The LOW period of the SCL clock. The HIGH period of the SCL clock.
105
tSU;STA tHD;STA
set-up time repeated START hold time START condition
105 365
155 415
s s
tLOW tHIGH tr tf tSU;DAT tHD;DAT tSU;STO 9
SCL LOW time SCL HIGH time rise time SDA and SCL fall time SDA and SCL data set-up time data hold time set-up time STOP condition
105 365 - - 250 0 105
155 - 1.0 0.3 - - 155
s s s s ns ns s
HANDLING
Inputs and outputs are protected against electrostatic discharge in normal handling. However, it is good practice to take normal precautions appropriate to handling MOS devices (see "Handbook IC03, Section: General, Handling MOS devices").
1996 Nov 21
16
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
10 LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134). SYMBOL VDD VI II IO Ptot PO IDD ISS Tstg Tamb supply voltage all input voltages DC input current DC output current total power dissipation power dissipation per output supply current through pin VDD supply current through pin VSS storage temperature operating ambient temperature PARAMETER
PCD3311C; PCD3312C
MIN. -0.8 -0.8 -10 -10 - - -50 -50 -65 -25
MAX. +8.0 VDD + 0.8 +10 +10 300 50 +50 +50 +150 +70 V V
UNIT
mA mA mW mW mA mA C C
11 CHARACTERISTICS VDD = 2.5 to 6.0 V; VSS = 0 V; Tamb = -25 to +70 C; all voltages with respect to VSS; fxtal = 3.58 MHz (gmL); maximum series resistance = 50 ; unless otherwise specified. SYMBOL VDD IDD PARAMETER operating supply voltage operating supply current (note 1) no output tone single output tone dual output tone Istb static standby current (note 2) Inputs/outputs (SDA) D0 TO D5; MODE; STROBE VIL VIH IIL IOL fSCL Ci ti LOW level input voltage HIGH level input voltage 0 0.7VDD -30 3 - - - - - -150 - - - - 0.3VDD VDD -300 - 100 7 100 V V - - - - 50 0.5 0.6 - 100 0.8 0.9 3 A mA mA A MIN. 2.5 - TYP MAX. 6.0 V UNIT
D2 TO D5 MODE; STROBE; A0 pull-down input current; VI = VDD LOW level output current (SDA); VOL = 0.4 V SCL clock frequency input capacitance; VI = VSS allowable input spike pulse width nA
SCL (D0); SDA (D1) mA kHz pF ns
1996 Nov 21
17
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
PCD3311C; PCD3312C
SYMBOL
PARAMETER
MIN.
TYP
MAX.
UNIT
TONE output (see test circuit, Fig.15) VHG(RMS) VLG(RMS) VDC Gv THD DTMF output voltage (RMS), HIGH group DTMF output voltage (RMS), LOW group DC voltage level voltage gain (pre-emphasis) of group Total Harmonic Distortion; Tamb = 25 C dual tone (note 3) modem tone (note 4) Zo OSCI input VOSC(p-p) maximum allowable amplitude at OSCI - - - 400 150 100 - VDD - VSS V - - - - - output impedance - - - -25 -29 0.1 - - 0.5 dB dB k 158 125 - 1.85 192 150
1 2 VDD
205 160 - 2.35
mV mV V dB
2.10
Timing (VDD = 3 V) tOSC(ON) tTONE(ON) tSPW tDS tDH Notes 1. Oscillator ON; VDD = 3 V; crystal connected between OSCI and OSCO; D0/SCL and D1/SDA connected via resistance of 5.6 k to VDD; all other pins left open. 2. As note 1, but with oscillator OFF. 3. Related to the level of the LOW group frequency component, according to CEPT recommendations. 4. Related to the level of the fundamental frequency. 5. Oscillator must be running. 6. Values are referenced to the 10% and 90% levels of the relevant pulse amplitudes, with a total voltage swing from VSS to VDD. oscillator start-up time TONE start-up time (note 5) STROBE pulse width (note 6) data set-up time (note 6) data hold time (note 6) 3 0.5 - - - ms ms ns ns ns
handbook, halfpage
VDD TONE PCD3311C PCD3312C VSS
1 F
50 pF
10 k
MGG513
Fig.15 TONE output test circuit.
1996 Nov 21
18
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
PCD3311C; PCD3312C
handbook, halfpage
1.6
MGG514
handbook, halfpage
300
MGG515
Istb (A) 1.2
IDD Tamb = -25 C +25 C +70 C 200 (A)
Tamb = -25 C +25 C +70 C
0.8 100 0.4
0
0 0 2 4 6 VDD (V) 8 0 2 4 6V 8 DD (V)
Fig.16 Standby supply current as a function of supply voltage; oscillator OFF.
Fig.17 Operating supply current as a function of supply voltage; oscillator ON, no output at TONE.
handbook, halfpage
1.5
MGG516
IDD (mA) 1
Tamb = -25 C +25 C +70 C
handbook, halfpage
6
MGG517
Tamb = -25 C
II (A) +25 C 4 +70 C
0.5
2
0 0 2 4 6V 8 DD (V)
0 0 1 2 VI (V) 3
Fig.18 Operating supply current as a function of supply voltage; oscillator ON, dual tone at TONE.
Fig.19 Pull-down input current as a function of input voltage; VDD = 3 V.
1996 Nov 21
19
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
PCD3311C; PCD3312C
handbook, halfpage
-11
MGG518
handbook, halfpage
0.4
MGG519
VTONE (dBm) -12
Tamb = -25 C +25 C +70 C HIGH GROUP
VTONE (dB) 0 Tamb = -25 C +25 C
-13
-0.4 -14 -25 C +25 C +70 C -15 0 2 4 VDD (V) 6 -0.8 106 105 104 RL () 103 +70 C LOW GROUP
Fig.20 DTMF output voltage levels as a function of operating supply voltage; RL = 1 M.
Fig.21 Dual tone output voltage level as a function of output load resistance.
handbook, full pagewidth
MGG520
0
level (dBm) -20 CS203
-40
-60
-80
-100
0
1
2
3
4
frequency (kHz)
MGG521
5
handbook, full pagewidth
0 level (dBm) -20
-40
-60
CS203
-80
-100
0
10
20
30
40
frequency (kHz)
50
Fig.22 Typical frequency spectrum of a dual tone signal after flat-band amplification of 6 dB.
1996 Nov 21
20
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
12 APPLICATION INFORMATION
PCD3311C; PCD3312C
handbook, halfpage
VSS
VDD
1 4 7
23A 56B 89C 0 D
GENERAL PURPOSE MICROCONTROLLER (4 or 8-BIT)
mute
data bus
OSCI OSCO STROBE D0 PCD3311C TONE D5 MODE VDD VSS
MBH669
Fig.23 PCD3311C driven by microcontroller with parallel data bus.
handbook, halfpage
VSS
VDD
1 4 7
23A 56B 89C 0 D
TELEPHONY MICROCONTROLLER PCF84C21A OSCI OSCO
mute
3.58 MHz I2C bus 4 pF
OSCI OSCO SCL PCD3312C TONE SDA A0 VSS VDD
MGG544
Fig.24 PCD3312C driven by microcontroller PCF84C21A. The PCF84C21A is a single-chip 8-bit microcontroller with 2 kbytes ROM and I2C-bus. The same application is possible with the PCD3311C with MODE = VSS.
1996 Nov 21
21
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
13 PACKAGE OUTLINES DIP14: plastic dual in-line package; 14 leads (300 mil)
PCD3311C; PCD3312C
SOT27-1
D seating plane
ME
A2
A
L
A1
c Z e b1 b 14 8 MH wM (e 1)
pin 1 index E
1
7
0
5 scale
10 mm
DIMENSIONS (inch dimensions are derived from the original mm dimensions) UNIT mm inches A max. 4.2 0.17 A1 min. 0.51 0.020 A2 max. 3.2 0.13 b 1.73 1.13 0.068 0.044 b1 0.53 0.38 0.021 0.015 c 0.36 0.23 0.014 0.009 D (1) 19.50 18.55 0.77 0.73 E (1) 6.48 6.20 0.26 0.24 e 2.54 0.10 e1 7.62 0.30 L 3.60 3.05 0.14 0.12 ME 8.25 7.80 0.32 0.31 MH 10.0 8.3 0.39 0.33 w 0.254 0.01 Z (1) max. 2.2 0.087
Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION SOT27-1 REFERENCES IEC 050G04 JEDEC MO-001AA EIAJ EUROPEAN PROJECTION
ISSUE DATE 92-11-17 95-03-11
1996 Nov 21
22
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
PCD3311C; PCD3312C
SO16: plastic small outline package; 16 leads; body width 7.5 mm
SOT162-1
D
E
A X
c y HE vMA
Z 16 9
Q A2 A1 pin 1 index Lp L 1 e bp 8 wM detail X (A 3) A
0
5 scale
10 mm
DIMENSIONS (inch dimensions are derived from the original mm dimensions) UNIT mm inches A max. 2.65 0.10 A1 0.30 0.10 A2 2.45 2.25 A3 0.25 0.01 bp 0.49 0.36 c 0.32 0.23 D (1) 10.5 10.1 0.41 0.40 E (1) 7.6 7.4 0.30 0.29 e 1.27 0.050 HE 10.65 10.00 0.42 0.39 L 1.4 0.055 Lp 1.1 0.4 0.043 0.016 Q 1.1 1.0 0.043 0.039 v 0.25 0.01 w 0.25 0.01 y 0.1 0.004 Z
(1)
0.9 0.4 0.035 0.016
0.012 0.096 0.004 0.089
0.019 0.013 0.014 0.009
8 0o
o
Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. OUTLINE VERSION SOT162-1 REFERENCES IEC 075E03 JEDEC MS-013AA EIAJ EUROPEAN PROJECTION
ISSUE DATE 92-11-17 95-01-24
1996 Nov 21
23
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
PCD3311C; PCD3312C
DIP8: plastic dual in-line package; 8 leads (300 mil)
SOT97-1
D seating plane
ME
A2
A
L
A1
c Z e b1 wM (e 1) b2 5 MH
b 8
pin 1 index E
1
4
0
5 scale
10 mm
DIMENSIONS (inch dimensions are derived from the original mm dimensions) UNIT mm inches A max. 4.2 0.17 A1 min. 0.51 0.020 A2 max. 3.2 0.13 b 1.73 1.14 0.068 0.045 b1 0.53 0.38 0.021 0.015 b2 1.07 0.89 0.042 0.035 c 0.36 0.23 0.014 0.009 D (1) 9.8 9.2 0.39 0.36 E (1) 6.48 6.20 0.26 0.24 e 2.54 0.10 e1 7.62 0.30 L 3.60 3.05 0.14 0.12 ME 8.25 7.80 0.32 0.31 MH 10.0 8.3 0.39 0.33 w 0.254 0.01 Z (1) max. 1.15 0.045
Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION SOT97-1 REFERENCES IEC 050G01 JEDEC MO-001AN EIAJ EUROPEAN PROJECTION
ISSUE DATE 92-11-17 95-02-04
1996 Nov 21
24
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
PCD3311C; PCD3312C
SO8: plastic small outline package; 8 leads; body width 7.5 mm
SOT176-1
D
E
A X
c y HE vMA
Z 8 5
Q A2 A1 pin 1 index Lp L 1 e bp 4 wM detail X (A 3) A
0
5 scale
10 mm
DIMENSIONS (inch dimensions are derived from the original mm dimensions) UNIT mm inches A max. 2.65 0.10 A1 0.3 0.1 A2 2.45 2.25 A3 0.25 0.01 bp 0.49 0.36 c 0.32 0.23 D (1) 7.65 7.45 0.30 0.29 E (1) 7.6 7.4 0.30 0.29 e 1.27 0.050 HE 10.65 10.00 0.42 0.39 L 1.45 0.057 Lp 1.1 0.45 0.043 0.018 Q 1.1 1.0 0.043 0.039 v 0.25 0.01 w 0.25 0.01 y 0.1 0.004 Z (1) 2.0 1.8 0.079 0.071
0.012 0.096 0.004 0.089
0.019 0.013 0.014 0.009
8 0o
o
Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. OUTLINE VERSION SOT176-1 REFERENCES IEC JEDEC EIAJ EUROPEAN PROJECTION
ISSUE DATE 91-08-13 95-02-25
1996 Nov 21
25
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
14 SOLDERING 14.1 Introduction
PCD3311C; PCD3312C
There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used. This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011). 14.2 14.2.1 DIP SOLDERING BY DIPPING OR BY WAVE
Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 C. Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 C. 14.3.2 WAVE SOLDERING
Wave soldering techniques can be used for all SO packages if the following conditions are observed: * A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used. * The longitudinal axis of the package footprint must be parallel to the solder flow. * The package footprint must incorporate solder thieves at the downstream end. During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. Maximum permissible solder temperature is 260 C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 C within 6 seconds. Typical dwell time is 4 seconds at 250 C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. 14.3.3 REPAIRING SOLDERED JOINTS
The maximum permissible temperature of the solder is 260 C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds. The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature (Tstg max). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit. 14.2.2 REPAIRING SOLDERED JOINTS
Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 C, contact may be up to 5 seconds. 14.3 14.3.1 SO REFLOW SOLDERING
Reflow soldering techniques are suitable for all SO packages. Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 C.
1996 Nov 21
26
Philips Semiconductors
Product specification
DTMF/modem/musical-tone generators
15 DEFINITIONS Data sheet status Objective specification Preliminary specification Product specification Limiting values
PCD3311C; PCD3312C
This data sheet contains target or goal specifications for product development. This data sheet contains preliminary data; supplementary data may be published later. This data sheet contains final product specifications.
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. 16 LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. 17 PURCHASE OF PHILIPS I2C COMPONENTS
Purchase of Philips I2C components conveys a license under the Philips' I2C patent to use the components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.
1996 Nov 21
27
Philips Semiconductors - a worldwide company
Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 32 88 2636, Fax. +45 31 57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580/xxx France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstrae 69, D-20097 HAMBURG, Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +30 1 4894 339/239, Fax. +30 1 4814 240 Hungary: see Austria India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722 Indonesia: see Singapore Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381 Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327 Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 247 9145, Fax. +7 095 247 9144 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494 South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 Sao Paulo, SAO PAULO - SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 829 1849 Spain: Balmes 22, 08007 BARCELONA, Tel. +34 3 301 6312, Fax. +34 3 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 632 2000, Fax. +46 8 632 2745 Switzerland: Allmendstrasse 140, CH-8027 ZURICH, Tel. +41 1 488 2686, Fax. +41 1 481 7730 Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West Road, Sec. 1, P.O. Box 22978, TAIPEI 100, Tel. +886 2 382 4443, Fax. +886 2 382 4444 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Talatpasa Cad. No. 5, 80640 GULTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381 Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 625 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825 (c) Philips Electronics N.V. 1996
Internet: http://www.semiconductors.philips.com
SCA52
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
417021/1200/02/pp28
Date of release: 1996 Nov 21
Document order number:
9397 750 01155


▲Up To Search▲   

 
Price & Availability of PCD3311CT

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X